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Conditional causal effect

• In this chapter introduce g-estimation method to estimate conditional
causal effect.

• G-estimation is estimate conditional average causal effect through
structural nested model.
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Conditional causal effect

• A : Smoking cessation

• Y : Weight gain

• L : Confounder (Ex moderate exercise, male, white etc)

• Estimate the average causal effect of treatment A within levels of L.

E(Y a=1|L)− E(Y a=0|L)

E(Y a=1 − Y a=0|L)
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Conditional causal effect

• If there were no effect-measure modification by L, structural model for
the conditional causal effect would be

E(Y a − Y a=0|L) = β1a

• Causal effect which is depend on L

E(Y a − Y a=0|L) = β1a+ β2aL
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Structural nested mean model

• Under conditional exchangeability Y a⊥A|L, the structural model can also
be written as

E(Y a − Y a=0|A = a, L) = β1a+ β2aL

• Structural nested mean models are semiparametric because there is no
parameter β0 about intercept and β3 for a term β3L.

• Leaving there parameters unspecified, structural nested models make
fewer assumptions and can be more robust to model misspecification.
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Rank preservation

• Suppose there are two lists of individuals ordered from larger to smaller
value of the corresponding counterfactual outcome.

• If both lists are in identical order we say that there is rank preservation.

• When the effect of treatment A on the outcome Y is exactly the same,
on the additive scale, for all individuals in the study population, we say
that additive rank preservation holds.
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Rank preservation

• An example of an rank-preserving structural model is additive conditional
rank-preserving model.

Y a
i − Y a=0

i = ψ1a+ ψ2aLi for all individuals i
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G-estimation

• Suppose there is effect modification by some components V of L.

• Assume that the conditional additive rank-preserving model

Y a
i − Y a=0

i = ψ1a+ ψ2aVi

• Write model in the equivalent form

Y a=0 = Y a − ψ1a− ψ2aV

• By consistency
Y a=0 = Y − ψ1A− ψ2AV

• Define
H(ψ∗

1 , ψ
∗
2 ) = Y − ψ∗

1A− ψ∗
2AV
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G-estimation

• If ψ∗
1 = ψ1, ψ

∗
2 = ψ2, H(ψ∗

1 , ψ
∗
2 ) = Y a=0

• Consider the logistic model

logitPr(A = 1|Y a=0, L) = α0 + α1Y
a=0 + α2L

• Because of the conditional exchageability, α1 = 0.
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G-estimation

• Consider the logistic model

logitPr(A = 1|H(ψ∗
1 , ψ

∗
2 ), L) = α0 +α1H(ψ∗

1 , ψ
∗
2 ) +α2H(ψ∗

1 , ψ
∗
2 )V +α3L

• Estimate ψ1, ψ2 as make both α1 and α2 0. (Grid search)
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Non-rank preservation

• ψ1 and ψ2 produce a consistent estimate of the parameter β1 and β2 of
the mean model if average treatment effect is equal in all levels of L.

• This is true regardless of whether the conditional additive rank
preservation holds.

• G-estimation algorithm only requires that H(β1, β2) and Y a=0 have the
same conditional mean given L.
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Selection Bias

• In the presence of censoring, causal effect is not E(Y a=1 −Y a=0|A, L) but
E(Y a=1,c=0 − Y a=0,c=0|A, L)

• G-estimation can only be used to adjust for confounding not selection
bias.

• Thus when using g-estimation, one first needs to adjust for selection bias
due to censoring by IP weighting.
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